Statistics

Summer 2023

Lecture 10

Feb 19-8:47 AM

class QZ 11 Use the chart below (1) Find $P(x=9)$ $=1-[.1+.2+.3+.35]=.05 \mathrm{~J}$ 2) Find $P(x>1)$ $=1-P(x=1)=1-.1=.9$ 3) Draw Prob, dist. historjam $x \rightarrow L 1, P(x) \rightarrow L 2$ 1 -varstuots with L1 ! L L $\begin{aligned} & \mu=\bar{x}=5.1 \\ & \sigma=\sigma_{x}=2.142 \\ & n=1 \& \text { Total Prob. } \\ & \mu \approx 5, \sigma \approx 2 \end{aligned}$ 95% Range: $\mu \pm 2 \sigma \rightarrow 1$ 有 9 - usval Range	

Jun 28-7:40 AM

Consider a binomial Prob. dist. with $n=180$ E. $P=.75$

1) $q=1-p$
2) $\mu=n p$

$$
=1-.75
$$

$$
=25
$$

$$
\begin{aligned}
& =180(.75) \\
& =135
\end{aligned}
$$

$$
\begin{aligned}
3) \sigma^{2} & =n p q \\
& =180(.75)(.25) \\
& =33.75
\end{aligned}
$$

$$
\text { 4) } \sigma=\sqrt{\sigma^{2}}=\frac{\sqrt{33.75}}{}=\frac{1589}{}
$$

5) 68% Range

$$
\mu \pm \sigma=135 \pm 6
$$

$$
\Rightarrow 12970141
$$

Round $\mu \underset{L_{>}}{\varepsilon} \sigma$ to whole \# 6) 95 / Range

$$
\mu \pm 2 \sigma=135 \pm 2(6)
$$

$$
\Rightarrow \quad 123 \text { to } 147
$$

Let x be \# of Successes

$$
\text { 7) } \begin{aligned}
& P(x=140) \\
= & \operatorname{binompd} f(180, .75,140) \\
= & .049
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8) } P(x<141) \\
& =\text { binomedff(180, } 75,141) \\
& =.869
\end{aligned}
$$

Jun 28-8:33 AM
9) $P(x \geq 125)=1-P(x \leq 124)=1-\operatorname{binomdd} f(180,175,124)$

$$
124 \quad 125
$$

$$
.962
$$

10) $P(123 \leq x \leq 147)$

$$
\begin{gathered}
=\operatorname{binomcdf}(180, .75,147)-\operatorname{binomcd} f(180, .75,122) \\
\text { Reduce by } 1 \\
=.969
\end{gathered}
$$

You are making random guesses on a muttiple-chaire exam with 60 questions.
Each question has 3 choices, but only one correct choice.
Success is to guess the correct ans.

1) $n=60$
2) $P=\frac{1}{3}$
3) $9=\frac{2}{3}$
4) $\mu=n p$
5) $\begin{aligned} \sigma^{2} & =n p q \\ & =60\left(\frac{1}{3}\right)\left(\frac{2}{3}\right) \\ & =\frac{40}{3}\end{aligned}$
$=60\left(\frac{1}{3}\right)$
$=20$
6) $\begin{aligned} \sigma & =\sqrt{\sigma^{2}} \\ & =\sqrt{40 / 3}\end{aligned}$

$$
=3.651
$$

7) Usual Range $\mu \pm 2 \sigma \Rightarrow 12$ To 28
8) $P\left(\right.$ guess $\frac{\text { exactly } 25}{x-25}$ correct Ans $)=P(x=25)$

$$
=\operatorname{binompdf}(60,1 / 3,25)
$$

9) $P\left(\right.$ guess $\frac{\text { at least } 15}{x>15}$ Correct Ans) $=$ \square .042

$$
=P(x \geq 15)=1-P(x \leq 14)=1-\operatorname{binom} \operatorname{cdf}(60,1 / 3,14)=.937
$$

10) $P($ guess between 10 and 25 correct Ans, inclusive) $=$

$$
P(10 \leq x \leq 25)=\operatorname{binomcdf}(60,1 / 3,25)
$$

Jun 28-8:47 AM

Class QZ 12
Given binomial Prob. dist with $n=150$, and $P=.6$
find

1) $P\left(x_{i}=100\right)$

$$
=\operatorname{binamp} \operatorname{df}(150, \cdot 6,100)
$$

$$
=1.077
$$

$$
\text { 2) } \begin{aligned}
& P(x<100)=P(x<99) \\
& \text { bini } d S(150,6,99) \\
&=.9441
\end{aligned}
$$

Geometric Prob. Dist.:
It is very similar to binomial prob. dist. but there is no n.
x where first success happens

$$
\begin{gathered}
p \rightarrow p(\text { Success }) \quad q \rightarrow p(\text { failure }) \\
p+q=1, \quad q=1-p
\end{gathered}
$$

$p \dot{\varepsilon} q$ remain unchanges for any event.

$$
\begin{aligned}
& P(x)=p \cdot q^{x-1} \quad x=1,2,3,4, \ldots \\
& \mu=\frac{1}{p}, \sigma^{2}=\frac{q}{p^{2}}, \sigma=\sqrt{\sigma^{2}}
\end{aligned}
$$

Consider a geometric Prob. dist with $p=.5$

$$
\begin{align*}
& q=1-p=0 \\
& \mu=\frac{1}{p}=\frac{1}{.5}=2 \quad \sigma^{2}=\frac{q}{p^{2}}=\frac{.5}{.5^{2}}=2 \tag{2}\\
& \sigma=\sqrt{\sigma^{2}}=\sqrt{2}=1.414
\end{align*}
$$

$P($ first success happens at ard trial)

$$
=P(x=3)=.5 \cdot(.5)^{3-1}=.5 \cdot(.5)^{2}=.125
$$

using TI Command End VARS \& Geometpdf(

$$
P(x=3)=\text { Geometpdf }(.5,3)=. .125
$$

P (first Success happens $\underbrace{\text { before } 4 \text { th }}_{x<4}$ trial)

$$
\begin{aligned}
=P(x<4) & =P(x<3) \\
& =\text { geomet } \operatorname{cdf}(.5,3)=.875
\end{aligned}
$$

You are making random guesses on a multiple-choice exam with 4 choices per question but one correct choice.

$$
\begin{aligned}
& P=\frac{1}{4}=.25 \quad q=\frac{3}{4}=.75 \\
& \mu=\frac{1}{p}=\frac{1}{.25}=4 \quad \sigma^{2}=\frac{9}{p^{2}}=\frac{.75}{.25^{2}}=12 \\
& \sigma=\sqrt{\sigma^{2}} \approx 3.5 \quad \begin{array}{l}
\text { usual Range } \\
\\
\\
\mu \pm 2 \sigma=4 \pm 2(3.5) \Rightarrow-3 \text { to } 11
\end{array}
\end{aligned}
$$

P (first correct guess happens on 4th question)
$P(x=4)=$ geomet $\rho d f(.25,4)=\begin{aligned} & x=4 \\ & .105\end{aligned}$
$P($ first Correct guess happens $\underset{x>4}{\text { after } 4 \text { th }}$ question)
$P(x>4)=P(x \geq 5)=1-P(x \leq 4)$
$=1$ - geametcdf $f(.25,4)$
1000000
45
$=.316$
P (first correct guess happens $\frac{\text { on end }}{x=2}$ or orestion) $\frac{5 \text { th }}{x=5}$ question)

Jun 28-9:43 AM

A basketball player makes 8% of his FT.
$P=.8 \quad q=.2$
$\sigma=\sqrt{\sigma^{2}}$
$\mu=\frac{1}{p}=\frac{1}{.8}=1.25$
$=\sqrt{.3125}$
$\sigma^{2}=\frac{p}{p^{2}}=\frac{.2}{.8^{2}}=.3125$
$=.559$
P (he/she makes FT on and attempt)
$=P(x=2)=$ geo met $p d f(.8,2)=.16$
P (he/ she makes FT between 3rd and Fth
attempt, inclusive)
$P(3 \leq x \leq 5)=$ geometcd $f(.8,5)$-geometcdf $(.8,2)$
$=.040$
$\square P(x=3$ or $x=4$ or $x=5)=$
geo met pdf $(.8,3)+9$ comet $p d f(.8,4)+$ geomet $p d f(8,5)$

Poisson Prob. Dist.
x is \# of Successes in an interval where the average of Successes μ or λ given. Interval $\quad x=0,1,2,3, \ldots$ Average \#t of Successes is

$$
P(x)=\frac{\mu^{\chi}}{x!} \cdot e^{-\mu}
$$

$$
e \approx 2.718
$$

$$
\sigma^{2}=\mu, \sigma=\sqrt{\sigma^{2}}
$$

Consider a Poisson Prob. dist. with $\mu=4$ in a fixed interval.

$$
\begin{aligned}
& \begin{array}{l}
\sigma^{2}=4 \\
\sigma=\sqrt{\sigma^{2}}=2
\end{array} \Rightarrow 68 \% \text { Range } \begin{array}{r}
\mu \pm \sigma \\
-4+2
\end{array} \\
& =4 \pm 2 \Rightarrow 2 \text { tob } \\
& P(x=5)=\frac{4^{5}}{5!} \cdot(2.718)^{-4} \\
& P(x)=\frac{\mu^{\chi}}{\chi!} \cdot e^{-\mu} \\
& e \approx 2.118 \\
& =\frac{1024}{120} \cdot(2.718)^{-4}=.156 \\
& 1024 \div 120 \times 2.718 \text { 囚 } 04 \text { enter } \\
& \text { using TI Command } \quad P(x=5)= \\
& \text { and VARS PoissonPdff } \\
& P(x \leq 5)=\text { Poissoncdf }(4,5)=.785
\end{aligned}
$$

In average, 150 people attend per movie,

$$
\begin{aligned}
P(\text { exactly } 140 \text { attend }) & =P(x=140) \\
& =\text { Poisson Pdf }(150,140) \\
& =.024
\end{aligned}
$$

$$
\begin{aligned}
P(\text { at lat } 140 \text { attend }) & =P(x \geq 140) \\
& =1-P(x \leq 139) \\
& =1-P o i s 0 n \text { cl f }(150,139) \\
& =1.803
\end{aligned}
$$

Jun 28-10:49 AM

In average, this coffee place has, 64 customers between $\frac{6: 00 \mathrm{AM} \text { to } 10: 00 \mathrm{AM} .}{\text { Fixed Interval }}$
$\mu=64$
$\sigma^{2}=\mu=64 \quad \sigma=\sqrt{\sigma^{2}}=\sqrt{64}=58$
68% Range $\rightarrow \mu \pm \sigma=64 \pm 8 \Rightarrow 56$ to 72
$P($ get between 60 and 70 , inclusive, customers in That shift)

$$
\begin{aligned}
P(60 \leq x \leq 70) & =\text { poissoncdf }(64,70) \text {-Poissondf }(64,59) \\
& =.502
\end{aligned}
$$

$P($ get 60 or 70 customers in that Shift)
$P(x=60$ or $x=70)=$ Poisson Pdf $(64,60)+$
SG 17

$$
\begin{array}{r}
\text { Poisson Pdf }(64,70) \\
=.082
\end{array}
$$

Exam II \Rightarrow SG 1 -SG 17
Review exam 1

$$
\text { Data }\left\{\begin{array}{l}
\text { 1) Qualitative } \\
\text { (Non-Numerical) }
\end{array} \quad \begin{array}{l}
\text { 1) Discrete } \\
\text { Countable } \\
\text { 2) Quantitative } \\
\text { (Numerical) }
\end{array} \begin{array}{l}
\text { 2) Continuous } \\
\text { Measureable }
\end{array}\right.
$$

We use continuous random variable

1) Uniform Prob. dist.
2) Standard normal Prob. dist.
3) Normal Prob. dist.
4) Central Limit Theorem
5) Applications

Class QZ 13
Given a binomial Prob. dist with

$$
n=250 \quad \therefore \quad P=.8
$$

1) $q=1-P=.2$
2) $\mu=n p=200$
3) $\sigma^{2}=n p q=40$
4) σ (Round to whole \#)
5) Usual Range

$$
=\sqrt{\sigma^{2}}=\sqrt{40} \approx 6
$$

$$
\begin{aligned}
& \mu \pm 2 \sigma=200 \pm 2(6) \\
& \Rightarrow P \quad 188 \text { to } 212
\end{aligned}
$$

6) $P(195 \leq x \leq 210)$

$$
=\operatorname{binomedf}(250, .8,210) \text { - } \operatorname{binomed} f(250,8,194)=.763
$$

Jun 28-11:14 AM

